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at makes a shader good? ~

= Make stuff look good
Stable
= Clean, no aliasing

= Expressiveness in material types

= Simple, intuitive models
= Main tools for this: BRDFs
= Blinn-Phong, Banks, Ashikhmin-Shirley

= Most materials, stylized or not, can
be expressed by a simple BRDF
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There is no easy way to objectify what looks good, but | find it useful to lay our goals down as
to what we consider “good” means, to make it more objective.

Blinn-Phong, properly factored and filtered, turns out to be quite expressive.
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= Diffuse part isn’t bad
= Concentrate on specular part
= Review: L, =P * pow(dot(N, H) , P)
= N = Normal
= H = Half Angle
= P = Power
= This is a normalized variant Blinn-Phong

= |f you aren’t normalizing, shame on you!
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The normalization factor on Blinn-Phong is vital for a number of reasons. It prevents the total
illumination from the function from getting darker, and though this could be compensated by
an artist, what it means is that an artist shouldn’t have to modify the Ks value when they are
changing the shininess of an object. It also automatically makes a scene ‘HDR’, because high
powers will return very powerful highlights.

This normalization factor will also prove helpful later on when we switch to a different BRDF,
since this one will be normalized.
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Viicrofacet theory

Blinn-Phong is no hack

= Microfacets
= Made of tiny mirrors

= Light bounces back when
mirrors line up

= A distribution function of
mirrors

= The closer the half angle is to
the normal, the greater
percent mirrors line up with
viewer, the brighter the
reflection
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There is more to reflectance than this, specifically when we talk about materials which have
some level of light scattering on the surface. But in terms of many hard materials, the
microfacet model is a good one.
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'e know how to implement Blinn Phong, rlgﬁth} 2

float BlinnPhongSpec (float2 TexCoord, float3 LightDir)
{

float3 N = NormalMap.Sample (SS_DEFAULT, TexCoord) ;
float SpecPow = PowerMap.Sample (SS_DEFAULT, TexCoord);

float3 Half = normalize (N + LightDir);

return SpecPow * pow(dot(Half, N), SpecPow) ;
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" Problem #1: Objects are too shiny

These screenshots are from a quick and dirty demo. The right way to do this is to use a
texture parameterization and render to it using Texture Space Lighting. This will create very
stable, nice looking results.

For my slides on this, check out:
http://www.slideshare.net/mobius.cn/advanced-lighting-techniques-dan-baker-meltdown-2005

It's a bit old now, but still good info.
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= Polished Granite Counter Tops
= Typical for kitchens, bathrooms

= No laminate material, just a
sealant

= Specularity since surface is
smooth

= | eathered Granite
= A rough stone look

= Shockingly accurate term, since
leather has a dull specular
highlight

= Same material, just rougher!
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As of now, my kitchen remodel still Isn’t done.
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em #2: Al

= Sampling issues can cause
normal to suddenly catch a
hlghllght
= Sparkles
= Causes artifacts in HDR
bloom pass
= Highlight may be missed
altogether

= Prevents using high powers
= Will often see spec done with
an env map to get sharp
highlights
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The inability to use high powers was a huge problem for us for Sid Meier’s Civilization 5. |
think people typically use reflectance maps to mitigate this, but this didn’t work well for our
scale. In general, it makes Blinn-Phong far less useful because the range of settings is very
narrow.



>
Vs T 4 . SIGGRAPH2012
ee problems in offline rendering? ‘o4

= Sampling rate is often locked — e.g. REYES

= Even wrong, samples are same frame to frame

= Removes much of temporal aliasing from the equation
= Everything is over-sampled

= A hundred samples per pixel isn’t uncommon

= Sampled at infinity most problems disappear

Solved? No, but brute force has mitigated it
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As | am not an expert in offline rendering, | don’t know the answers to these questions to my
own satisfaction. | believe that brute force has helped them, but an elegant solution would be
better.
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= Didn’t meet goals
= Unstable: resolution greatly affects large scale effects

= Aliases: temporally and spatially
= Unexpressive: unable to use a wide gamut of power
= How do we implement Blinn-Phong correctly?

= Could do a texture based lighting approach — a la REYES
= Could we find a similar BRDF that actually behaves itself?

Advances in Real-Time Rendering in 3D Graphics and Games
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| EAN Me

= Linear Efficient Anti-aliased Normal Mapping, I3D 2010
= Shipped in Sid Meier’s Civilization V for water
= Deploying for all asset production going forward
= Advantages:
= Temporally stable
= Resolution stable
= Can use high powers (e.g. 10,000+)
= Blinn-Phong content can be easily converted

= Automatically anisotropic
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A copy of our paper can be found at:
http://www.csee.umbc.edu/~olano/papers/

Or in the 13D proceedings:

Marc Olano and Dan Baker, "LEAN Mapping", 13D 2010: Proceedings of the ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games.

This talk is a little vague due to time constraints, but the 13D paper describes the specifics.
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_LEAN Mappin

Given a normal from a bump map: —/¥

N = (N.x, N.y, N.z) 7
Then we create another map M: A6 £
M = (B.x"2, B.x*B.y, B.y"2)
Where: 1

B = (N.x/N.z, N.y/N.z)

l e _ = _
56_5((}% _bn )T E : (hn _bn ))
Not redundant data! We need

M.x-Bx*Bx M.z-Bx*B.y
Mz-Bx*By M.y-By*B.y

the linear filtered version of E=[

these terms!
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= 5 Channels
= X, Y offset from center bump, can be 8 bit

= X2, Y72, X*Y, needs to be 16 bit if you want nice high specular
powers (and you do!)

= Compression might be possible, but since linear filtering
is used, we can’t sacrifice this

= Middle ground solutions to be covered next

Advances in Real-Time Rendering in 3D Graphics and Games

16



S|GGRAPH2012./’¢

linn Phong

= Base specular power s added as 1/s along the X*2 and
Y72 terms

= So M map (X*2, Y22, XY) becomes (X*2 + 1/s, Y*2 + 1/
s, XY)

= Storing the inverse power means we need 16 bit
precision for powers > 256

= Observation: even if we are using Blinn-Phong, storing
power as 1/s will cause MIP filter to operate correctly

Advances in Real-Time Rendering in 3D Graphics and Games
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How well does it approximate Blinn-Phong? =

= For low powers (e.g. < 16), LEAN mapping responds
differently than Blinn-Phong
= May need to retune some content

— Blinn-Phong
--- Beckmann
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We had some issues with low power materials being different — in some of our shaders we

actually LERP to Blinn-Phong for very low powers since the aliasing/reflectance issues aren’t
as great for low powers.
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= 5 Values can be expensive: alternative, lose anisotropy

M-Bx*Bx M-Bx*B.y
o M -Bx*By M-By*B.y

= Store 3 values, X, Y, (X2 + Y 2)/2
= Only (X2 + YA2)/2 needs be stored at high precision

Advances in Real-Time Rendering in 3D Graphics and Games
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roblem #1: Better
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blem #1: Better

The fact that there are still some illumination differences is likely due to the fact we shift the
distribution on the tangent plane rather than reorient the surface.
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= No aliasing

= |n fact, seems to alias
less than the real world

Advances in Real-Time Rendering in 3D Graphics and Games
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gonclusion

= Meets goals
= Stable: resolution rendered at does not affect large scale effects
= Anti-aliased: linear hardware filters work appropriately
= Expressive: can use large powers, and anisotropy supported

= Still some issues:

= Divergence with Blinn-Phong at low powers
= Storage space requirements are higher
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We have experimented with different compression schemes, and have found that splitting the
high and low precision into different channels of a BC5 texture actually works reasonably well.
Artifacts from incorrect linear filtering weren’t terrible.
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Shader Aliasing Anonymous

Avyear ago | had a wakeup call: I'd been throwing my life away, focusing on the wrong things.
What's the point in supporting many dynamic lights, for instance, if the shading is all wrong?

This was a ‘self-intervention’; the art team, on the other hand, had just come to accept
temporal aliasing and lack of appearance preservation.

The first rule is to admit that you have a problem. The second rule is: don’t go pointing this out
to artists before you have an action plan! | started showing them the many ways in which
things were broken and they hated me for it. Pride in their work turned to disgust. You can’t
‘unsee’ this stuffl!

So, | went looking for solutions...
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Key idea: MIP the lighting!
See: Advanced Lighting Tech [Baker05]

Gold standard

It'll cost you!
Virtual texture cache?
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The first of these is texture-space shading (TSS). It's a simple idea: light at the base mip
texture resolution and generate mipmaps (on the fly).

This is problematic in two respects:
1) You need a unique parameterisation (no UV overlap)

2) Shading is likely to be prohibitively expensive (and variable), since small on-screen
objects are still shaded at a much higher rate.

The second issue can be overcome by combining TSS with another technique.

The reason I’'m mentioning TSS is that it's a useful ground-truth method (like super sampling,
as Dan showed) to compare other methods against.
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Key idea: Find best-fit parameters n
E.g. normal, roughness, reflectance

See:
= BFGS fitting [Baker05]
= SpecVar Maps [Conran05]

= Frequency Domain Normal Map
Filtering [Han07]

Slow, fragile, discontinuous
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Fitting is one technique that could be combined with TSS.

The idea is to pre-calculate adjusted surface/material properties that best approximate the
average lighting response of the base textures (albedo, specular and normal maps), for each
MIP level.

The fitting process can be fiddly to get right. For instance, you need to ensure coherent results
between texels, so that hardware texture filtering can be used.

The bigger problem is that the process can be slow, particularly if you're trying to solve for
several parameters. In practice, the average normal that you get from regular mipmap
generation works well, so fitting can be focused on other properties, such as roughness/
glossiness, which has a big impact on appearance when using energy-conserving specular.
Still, anything that takes many seconds/minutes for a large texture will inhibit artist iteration.
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= Key idea: Estimate variance -> new roughness
= See “Mipmapping Normal Maps” [Toksvig04]

Advances in Real-Time Rendering in 3D Graphics and Games

Direct Variance Estimation Hririarlih @

Fortunately, there’s a much more direct approach (avoiding fitting entirely) if you're just
concerned with adjusting the specular power.

In 2004, Michael Toksvig came up with a supremely elegant method that does this based on
the length of the average filtered normal (Na), that we might get when sampling the normal
map in a shader.

The length provides an estimate of the variance of the original normals...

28



>
; g G - . SIGGRAPH2012 A
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= Key idea: Estimate variance -> new roughness

Advances in Real-Time Rendering in 3D Graphics and Games

Here we’re plugging the length into this simple equation...
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= Key idea: Estimate variance -> new roughness

Advances in Real-Time Rendering in 3D Graphics and Games

...and out pops the variance estimate.
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ct Variance Estimation

= Key idea: Estimate variance -> new roughness

Advances in Real-Time Rendering in 3D Graphics and Games

-

Using this second equation, we can then adjust our old specular power, s, based on the
variance.

This gives us a new specular power, p, that we shade with instead.
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After Gloss
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On the left: the original specular result. Highlights shimmer a lot under object, camera or light
motion.

In the middle: the adjusted, anti-aliased result. There’s a lot less shimmering and the teapot
looks similar at all scales.

On the right: a visualisation of gloss adjustment (Toksvig scale factor). Flat areas are light,
rough areas are dark. This makes intuitive sense.

Here’s a demo with a similar setup:
http://selfshadow.com/sandbox/gloss.html

In theory, these calculations can be performed in the shader itself...

32



Advances in Real-Time Rendering in 3D Graphics and Games

However, there’s a major practical issue: DXT compressed normals don’t place nice with
variance estimation.

With two-component normal map formats, we can’t even estimate variance (normal length is
assumed to be 1).
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Direct Variance Estimation

.
-
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ADLION4D

Fortunately, the problems go away if we precompute on texture import, prior to compression.

How do we do this?
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1g Variance

For each MIP: ;b_ﬁ“:g‘:ﬁ[
= Apply small filter for bilinear SR

= E.g. Tent [Lazarov11] or Gaussian
= (Calculate variance

= Store result:
= Directly, or adjust gloss map

= Allow edits?

Simple: for each MIP level of the normal map, compute the variance at each texel and store
the result in a texture.

Note: it's a good idea to apply a small (3x3) filter here to simulate hardware texture filtering
that will happen at runtime. This further reduces aliasing and leads to smoother mip transitions

(particularly from the base mip level).

Instead of storing variance directly, another option is to adjust the (artist-painted) gloss map.
This has the advantage that there’s no extra shading cost at run time — everything just works
automatically. However, it does tie the two textures together, which could be an issue if you

regularly mix and match to save time/memory.

It's perhaps tempting to allow artists edit the results, but this has the danger of reintroducing
aliasing and/or breaking the appearance in the distance. So far we haven’t found any need for

this.

Games are already shipping with this or very similar implementations. See [Lazarov11],
[McAuley12].
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Versatile... specular AA ‘everywhere’!

Dynamic reflections:
= 1. Generate MIPs
= 2. MIP-biased lookup

= Or DX11: variable Gaussian? Image-Space Gathering?
Voxel Cone Tracing [Crassin11]

Reflection billboards [Mittring11]

Reflection occlusion?

Advances in Real-Time Rendering in 3D Graphics and Games

Once you have variance-adjusted glossiness, it pays off everywhere it's used!

36



Options: Prefiltering (LEAN)

Toksvig

Good:
= More accurate results
= Anisotropic effects

Advances in Real-Time Rendering in 3D Graphics and Games
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However, although this method can work well, we can do better in some cases...
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ptions: Pr

Good:
= More accurate results

= Anisotropic effects

Advances in Real-Time Rendering in 3D Graphics and Games

LEAN mapping results in a tighter highlight here, which is closer to the ground truth.
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ptions: filtering (LEAN)

Bad:

= Memory
= Extra shading cost
= Tangent space

Advances in Real-Time Rendering in 3D Graphics and Games

4

= 4

However, there are some downsides...

Memory in particular is a big issue. 16 bit storage is needed if you want to go to higher
powers, as Dan already mentioned.

This is a major storage multiplier over DXT1 or DXT5, plus we need two textures!
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Times

Do O G. PO,

= Bivariate normal distribution X = | & T = !
Yy Xy POy Oy o

= Visual explanation:

Nl WV}

Ty

Before | cover some thoughts on overcoming these drawbacks, I'd like to briefly give some
additional background on LEAN mapping that helped me understand things more intuitively.

On the left is a regular normal (Gaussian) distribution. It has a similar falloff to Blinn-Phong,
particularly for higher specular powers.

LEAN mapping an extension of this — in fact it's a bivariate normal distribution. The covariance
matrix that’s reconstructed in the shader (as Dan mentioned earlier) describes this distribution.
There are two variances (tangent and bitangent) and correlation, p. These change the shape
and angle of the lobe.

It's easy to see how LEAN mapping can better approximate the distribution of normals. In
particular, if there’s more variance in a particular direction, the lobe will stretch out and
produce an anisotropic highlight.
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Memory

= Bake, as with Toksvig...

= Bilinear simulation still important!

= Store covariance matrix: [2,, Zy, 2,]?

Yz 2z

5 —
Yy Ly

= Can have precision issues

Advances in Real-Time Rendering in 3D Graphics and Games
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On the memory front, we could theoretically bake the covariance matrix offline and store that,
similar to baking Toksvig.

This isn’t strictly linearly filterable, but in practice it's not too bad.

However, there can still be precision problems, particularly with .
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Memory

= Bake, as with Toksvig...

= Bilinear simulation still important!

= Store 2 gloss values

looo(1/3 . ..
s [Be T2 [P O 82(1/Z¢x 1)
Bz Dyl L0 By 3

= Could use BC5 or DXT5

= Optionally store correlation: p = 2 /sqrt(2,2,)

Advances in Real-Time Rendering in 3D Graphics and Games

Another option is to store two gloss values in log space. This is a popular encoding for gloss,
as it’s pretty linear in terms of highlight size. This makes it intuitive to paint, and it also
behaves well with texture filtering and compression.

The correlation could be stored too, but you may find that this isn’t needed with your game
content. For instance, in the case of the earlier brick texture, most anisotropy in the normals is
strongly axis-aligned (along brick edges), so the correlation is low.
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Shading Cost

= Cheaper with two gloss values

// unpack normal // unpack normal
float4 tl = tex2D(leanl, texcoord); float4 t1 = tex2D(leanl, texcoord);

float3 N = float3(2*tl.xy - 1, tl.z); float3 N = float3(2*tl.xy - 1, tl.z);

// unpack gloss // unpack B and M
float2 g = tex2D(gloss, texcoord); float4 t2 = tex2D(lean2, texcoord);
float2 p = exp2(g*6.5); float2 B = (2*t2.xy - 1l)*sc;

float3 M = float3(t2.zw, 2*tl.w — 1l)*sc*sc;
// compute specular

float2 h = h.xy/h.z - N.xy/N.z; // convert M to E
h *= p; float3 E = M - float3(B*B, B.x*B.y);
float e = dot(h, h); float Det = E.x*E.y - E.zZz*E.z;

float spec = exp(-0.5*e)*p.x*p.y;
// compute specular
float2 h = h.xy/h.z - B;
float e = (h.x*h.x*E.y + h.y*h.y*E.x - 2*h.x*h.y*E.z);
float spec = (Det <= 0) ? 0 : exp(-0.5*e/Det)/sqrt(Det);

Advances in Real-Time Rendering in 3D Graphics and Games

By storing two log-space gloss values, we can cut down on the shading complexity too.

43



Deferred

= Needs a surface frame... A

) Standard quat
= Store a quaternion? R8GSBSAS
= Precision issues

= Encode/decode overhead

= (o tile-based? Forward+?

Quat.x | Quaty | Quat.z Quat.w/?

N.x N.y Gloss.x Gloss.y

Advances in Real-Time Rendering in 3D Graphics and Games

The final challenge is with deferred shading. The LEAN distribution requires a tangent frame,
so we need to store/reconstruct this somehow.

One compact option is to store a quaternion.

This image shows (0, 0, 1) rotated into world space using this quaternion, followed by lighting.
With R8G8B8AS, this produces banding beyond what you would get from storing the world-
space normal directly with the same precision, particularly if you compare against “Best Fit
Normals” [Kaplanyan10].
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Quat.x | Quaty | Quat.z
N.x N.y Gloss.x Gloss.y

To improve precision over RBG8B8AS8, we can get rid of the largest component, store the
index and reconstruct it later. Precision can then be improved by rescaling the remaining
components and using R10G10B10A2. See [Frykholm09] for more details.

This leads to more encode and decode overhead, although for tile-based deferred rendering,
the decode cost is amortized.

There is still the per-light overhead of transforming the half vector into tangent space using the
quaternion (6 instructions).

It's a classic tradeoff of storage cost vs. performance. I'm not recommending this approach for
current consoles, where MRT space and shader cycles are typically at a premium, but it's a
potential option for DX11.

Some space can be clawed back to make room for two gloss values by storing x and y of the
tangent space normal (reconstructing z later).
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Detail Normal Maps

Geometry
Diffuse
Environment Maps

Advances in Real-Time Rendering in 3D Graphics and Games

But we’re not done. Specular aliasing from normal maps is just one of several issues!
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Let's say that we've gone ahead and implemented specular AA based on normal map
roughness.

What happens later if we want to slap a detail normal map on top?

One (statistically sound) solution is to sum the variance. This works so long as the two normal
maps are not strongly anti-correlated — i.e. they don’t cancel each other out. (See the LEAN
Mapping paper for more details).

To do this, take the reciprocal of the existing specular power, s, add the variance from the
detail map, then finally invert again to get the new power, s’.

This is a simple rearrangement of the second equation for Toksvig mapping covered earlier. |
find this version a little easier to remember and it could be convenient if you're summing
additional variance from other sources. Other sources you say? Well, let’s see...
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= Another source of variance!
= |dea 1: prefilter geometric normals

= 1. Dilate -
o BlaiE
= 3. Toksvig

lll ‘
)
[/

\

e

= Needs atlas!

CINnNrAD A

bw
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Geometry is another source of normal variance and therefore aliasing!

We could prefilter our object-space normals and use Toksvig to get the variance.

However, just like TSS, we would need a unique parameterisation (an ‘atlas’), which isn’t

convenient!

Still, this gives us something to compare against.
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= |dea 2: Pixel Quad Message Passing [Penner11A]

= Access neighbours

= Code for average:

float2

float3

float3
float3
float3

float3

dir

n0
nl
n2
n3

nn

0.5 - frac(vpos*0.5 - 0.25)*2;
N;
ddx fine(n0) *dir.x;
ddy fine(n0)*dir.y;
ddy fine(nl)*dir.y;

n0 + nl + n2 + n3;

Advances in Real-Time Rendering in 3D Graphics and Games

Instead, we can adapt Eric Penner’s Pixel-Quad Message Passing technique (presented at
Advances last year) to access the other normals in the pixel quad at run time.

Note: high-quality derivatives are available with DX10/11 or PS3.

We can then average the normals and calculate variance.

Note: this code has been optimised a little, which explains the lack of a *0.25. Also, in case it's
not obvious, these are interpolated vertex normals that have been renormalised.

Behold, similar results to before!

(Please forgive the mesh flipping and different orientation; the last image comes from a
RenderMonkey project, whereas this one comes from a separate DX11 test app.)

49



IR ADLE

Angle

= |dea 3, from Kaplanyan & Valient:

= Combine normal cone (curvature)
and specular lobe cone
= 1. Convert spec power to cone angle
= 2. Add curvature angle:

float3 dN = fwidth (N) ; 0 ~
float3 new normal = normalize(N + dN);
float curvature = acos(dot(new_normal, N))/ (pi*0.5);

= 3. Convert back to new power

= Being used in production now!

Advances in Real-Time Rendering in 3D Graphics and Games

Anton Kaplanyan was kind enough to share an alternative method developed in collaboration
with Michal Valient at Guerrilla Games.

This process essentially works by adding spread/cone angles instead of variance.

First we convert the original specular power to a cone angle. (I won’t go into the details, but
this is based on a curve that relates specular power to the solid angle of the highlight above a

threshold.)

Next, we calculate a delta normal based on the deviation (fwidth) of the adjacent normals.

We then add this angle and convert back to a specular power.
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Geometry

= Optimised code:

float3 dN = fwidth(N) ;
float3 new _normal = normalize(N + dN);
float curvature = sqrt(l - dot(new_normal, N));

float angle = 4.11893/sqgrt(power) + curvature;
power = 16.9656/ (angle*angle) ;

= Similar results
= Future work

Advances in Real-Time Rendering in 3D Graphics and Games
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Using a cheap approximation to acos (there’s no direct GPU support for this, so it expands to
several instructions), we arrive at a pretty compact result.

The results are similar to the variance version...
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= Optimised code:

float3 dN = fwidth(N) ;
float3 new_normal = normalize(N + dN);
float curvature = sqrt(l - dot(new_normal, N));

float angle = 4.11893/sqrt(power) + curvature;
power = 16.9656/ (angle*angle) ;

= Similar results
= Future work

Advances in Real-Time Rendering in 3D Graphics and Games

4435

..here’s the variance version again.
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Diffuse Shading

Diffuse shading isn’t immune to aliasing either and we can get the same problems as specular
under normal map minification.

Here’s a plane lit with a light at a grazing angle using the filtered (averaged and renormalised)
bump normal.
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Diffuse Shading

If we compare against TSS we can see that we're losing a lot of luminance.

(Bump-level self-shadowing is another issue, which I'll be skipping over here.)
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Diffuse Shading

This can affect specular too, since N.L is part of the lighting equation outside of the BRDF.
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Here’s the result with TSS. It's a lot brighter and more detailed
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Diffuse Shading: What’s Wrong?

ges

N - p
= \What we should be doing: 0 (11" l) (IL, h) ds

What we should be doing is a full integral of the specular BRDF and N.L for all of the original
normals in the footprint of the current pixel.

(You can think of this as a discrete weighted sum instead, but I've use an integral to convey a
continuous signal, including interpolated normals).

Note: I've simplified things here quite a bit, by stripping the BRDF down, ignoring energy
conservation, for instance. ldeally, some other terms should be considered too.

o7



IR ADLE

1ading: What’s Wrong? 20124,

= What we should be doing:

= What we're doing now: (
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What we’re doing now (with Toksvig or LEAN) is approximating the integral on the right (just
the specular BRDF) but we’re still using the average normal for N.L.
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Diffuse Shading: What’s Wrong? 2L

= What we should be doing: (n'i : l)(n,,- : h>pd8

(2
= What we're doing now: (Il , 1) (n. ' h)pdg
(2
= Compromise: Q(n, . l)dS Q<n. . h)pds
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Approximating the full integral is a bit of a challenge, but we can get closer to the ground truth
by factoring the full integral into two separate integrals.

So now we just need to find a reasonable approximation to the left-hand side.

The result can then be used both for diffuse AA and for better specular AA.
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}
: . SIGGRAPH2012 4
ading: Solution A
= Normal variance = cone

= Lighting integral for cone of normals N
1

around average normal (Na) ¢
= Cone angle: cos(6) = 2*length(N.,) - 1 '0
1 1
/ / max(UniformSampleCone(u, v, cos#) - L, 0)
v=0 Ju=0

\

See: Physically Based Rendering 2" Ed.

Advances in Real-Time Rendering in 3D Graphics and Games

Back to cones!
We can trivially convert normal variance to a cone angle: cos(angle) = 2*|Na| - 1

Then, an we can approximate the earlier integral as an integration of N.L over this cone of
normals.
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Could precompute integral...

= Just like Pre-Integrated Skin Shading
[Penner11B]

float len = length(Na) ;
float3 N = Na/len;

tex2D (LUT,
float2 (dot(N, L)*0.5 + 0.5, 1len));

IN

al

N.L
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This integral can be precomputed via numerical integration and stored in a LUT.

This is just like Eric Penner’s Pre-Integrated Skin Shading technique (again, presented last
year at Advances).
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In practice, we can focus in on a smaller cone of normals, reducing the size of the texture and
therefore the potential for texture cache thrashing.

We could do the same for the x axis too.

The first 25 degrees seems to make the biggest difference in the cases I've seen so far.
Beyond that you start to get unwanted ‘wrap’ that looks wrong with unshadowed lighting.
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ffuse Shading: No LUT

Result
1.0

08 /

0.6

04

_—
04 0.2 0.0 0.2 04 0.6 0.8 1.0

It's possible to go a step further and replace the LUT entirely by approximating the curve.

It turns out that the ‘tail’ is close to an x*2 curve that joins with a straight line (regular N.L).

The video shows how things change with variance.
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iffuse Shading: No LUT

With the help of Mathematica, I've been able to boil this down to the following function.

The result is pretty close to the ‘focused’ LUT.
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ffuse Shading: No LUT

Unfortunately this costs too many shader instructions at the moment (it’s per light!)
Some of this cost could be amortised, but it’s likely that a cheaper approximation is possible.

We also face the same problem as with Toksvig when it comes to compressed normals,
so in practice the length of the normal or the variance should be stored somewhere.

instructions




;,_ji.ffuse Shading: Results

Back to our problem case...
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Here are the results with the integral. This looks promising...
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In fact it's a close approximation of TSS!

68



Diffuse Shading: Results

What about specular?
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Ta da! Much brighter (and also more stable)
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- Diffuse Shading: Results

It's not identical to TSS, but there are several reasons for this:

1) Integral approximations. We’ve factored the full integral into two separate integrals
2) These simpler integrals have in turn been approximated (LEAN, diffuse AA)

3) Additionally, I'm actually undersampling the signal here with TSS (2048”2 not enough!).
When | focused the resolution on a smaller section of the plane, the results were a little
darker and smoother (i.e. a little closer to the LEAN + diffuse AA result)
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bit.ly/diff aa
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SIGGRAPH2012v(_4§

Here’s a link to a simple WebGL demo that shows the diffuse AA component.

As with specular AA, there’s far less temporal shimmering and appearance is better preserved
at lower mip levels with “Diffuse AA” enabled (zoom out, or adjust the mip bias).
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Environmental Lighting

Standard approach:
= 1. Prefilter with Phong lobe
" 2. tex2Dlod (Env, float4 (R, bias));

Room for improvement:

= Microfacet model

= Specular lobe depends on L and V!
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Environment mapping can be another major source of aliasing.

Toksvig gloss adjustment in conjunction with Phong prefiltering is a good option here.

However, it would be nice to go a step beyond this and use a microfacet BRDF.
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= Phong:

Environmental Lighting

= Filtered Importance Sampling [Colbert08]

Advances in Real-Time Rendering in 3D Graphics and Games

Here’s Phong prefiltering on a plane. Highlights remain the same shape independent of view

angle.

74



-onmental Lighting

= Blinn-Phong:

= Filtered Importance Sampling [Colbert et al. 07]
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Here’s the same result with Blinn-Phong. The highlights spread out at shallower angles, which
is more realistic.

Filtered Importance Sampling (FIS) is one route to achieving this. It involves taking multiple
weighted (and mip-biased) samples of the environment map.
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The sample directions importance sample the specular distribution.

There are several steps to this process.
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Environmental Lighting: Beckmann

he = o+/—2log|és|cos 27&;
ST - hy = 0\/—2 log &9 sin 2w&,
H = normalize(|hg, hy, 1)
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We start off with a uniform distribution of random numbers.
(A low-discrepancy 2D point set like Hammersley is one option here.)
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| _mehtal Lighting: Beckmann e .

sqrt(1/s) Box-Muller transform

hy = 0\/—2 log &9 cos 2m&y

hy = 0'\/—2 log &9 sin 2m&y
normalize(|hy, by, 1])

s
I
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Next we can use the Box-Muller transform to generate a normal distribution. In this case for
(isotropic) Beckmann — a close match to Blinn-Phong, as Dan showed.

In practice, this can be done offline and then scaled by the standard deviation (sqrt[1/power])
on the fly.

This warps the random points to fit the distribution.
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Environmental Lighting: Beckmann

hy = 0\/—2 log &9 cos 2mE&y

hy = 0\/—2 log &9 sin 2m&y
normalize(|hy, by, 1])

a8
I

% 2
& o
l.f

Specular lobe
(H scaled by distribution
for visualisation)
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Next, ‘unprojecting’ onto the upper hemisphere gives us a half vector.
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mental Lighting: Beckmann

Orient lobe: L; = -reflect(V, H;)

Advances in Real-Time Rendering in 3D Graphics and Games

Finally, we can generate a sampling direction, Li, by reflecting the view vector about this half-
angle vector, Hi.

(Well, there is a final, final step, which is to transform this direction from tangent space to
world space, for lookup.)

This is sort of the opposite of what we normally do when lighting with point sources, where we
have a known light and view vector, from which we calculate the half vector.
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Environmental Lighting: LEAN

LEAN Importance Sampling 2, = \/—210g(§2) cos(2m&;)
= Start with regular Box-Muller: \/ 2108(&5) sin(27,)
—2log(&2) sin(27¢;

2y
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This process can easily extended to the bivariate normal distribution used by LEAN mapping.

As before, we use Box-Muller to generate a normal distribution.
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Environmentz

LEAN Importance Sampling y = \/_2 log (&) cos(27&;)

= Start with regular Box-Muller: . o
By = \/*21”(‘%(52) sin(27&;)

2
» Use LEAN distribution: vy — |2 Zz| _ | 0z POz0y
Her iy PGy as
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Next, we use the covariance matrix...
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Environmer | I,gl"l.tlrilg: LEAN

LEAN Importance Sampling 55— \/—210”'(f~>) cos(2m&;)
= Start with regular Box-Muller: .
2y = \/— 2 log(&9) sin(27&y )
= Use LEAN distribution:  y — |Zo 2| _ | Tx P00y
2y 2y PO, Oy, oy,
= Warp the points: hy = 0p2p + py
b, =0, (pzx +v1-— p22y> + 1y
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...to warp the points to the distribution.
Note: mu_x and mu_y come from the projected average normal.
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LEAN Importance Sampling

o

)
)
N
0]
[\
=
780

= Start with regular Box-Muller:

* Use LEAN distribution: y, — [=¢ 2| _ | Tx  P0x0y
2. 2, po, 0, o
= Warp the points: hy = 0,2, + [y

/,!/ = 0, (/):,,. + /1 — p? :!/> + fly
H = normalize([hy, hy, 1])
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= ‘Unproject’ as before:

Then we unproject to get the half vector and reflect as before.
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Isotropic
Beckmann
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Either distribution produces the stretched highlights shown earlier.

What's interesting is what happens with a strongly grooved (anisotropic) normal map.
For Beckmann (or Blinn-Phong), the result in the distance is overly diffuse.
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LEAN
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On the other hand, with the LEAN distribution, the distant appearance is similar to the high-res
version.
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= Next step: Approximate with anisotropic tap(s)
= Covariance = Ellipse
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Unfortunately, quite a few samples are needed with FIS. More samples are needed for highly
anisotropic cases (64+), whereas you can get away with less for semi-glossy, isotropic
situations.

It's possible that a different parameterisation and anisotropic texture fetches could result in a
cheap approximation.
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' Environmental Lighting

In spite of this, it's a useful framework to have around for prototyping purposes.

The approach could also be used to accelerate cubemap prefiltering.
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Part 4
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= Used LEAN mapping
for water

= Scale issues: Water at
a distance behaves
much like crumpled
aluminum
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= 4 scrolling planes to
simulate waves

A
= Interference patterns (NN
surprisingly convincing - \

= Can add LEAN maps -
together with '
appropriate cross terms
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r Current Mod

= CLEAN/LEAN depending on needs, for analytic lights

= Pre-convolved (Phong) cubemap array* for reflection
* MIPs suck for low powers

= Power computed from LEAN data

= Simplifies art model: Just need a few parameters to
be expressive
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Cubemap array index = the average of covariance matrix diagonal (top left, bottom right)
inverted, times 4.
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Continuous LOD (detail maps, normals, geometry)
Efficient, accurate cubemap filtering (LEAN)
Investigate energy conservation of LEAN under
minification

Factor other terms (shadowing, masking, etc.)
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Advances in Real-Time Rendering in 3D Graphics and Games

96



